18 research outputs found

    Polynomial-delay Enumeration Kernelizations for Cuts of Bounded Degree

    Full text link
    Enumeration kernelization was first proposed by Creignou et al. [TOCS 2017] and was later refined by Golovach et al. [JCSS 2022] into two different variants: fully-polynomial enumeration kernelization and polynomial-delay enumeration kernelization. In this paper, we consider the d-CUT problem from the perspective of (polynomial-delay) enumeration kenrelization. Given an undirected graph G = (V, E), a cut F = E(A, B) is a d-cut of G if every u in A has at most d neighbors in B and every v in B has at most d neighbors in A. Checking the existence of a d-cut in a graph is a well-known NP-hard problem and is well-studied in parameterized complexity [Algorithmica 2021, IWOCA 2021]. This problem also generalizes a well-studied problem MATCHING CUT (set d = 1) that has been a central problem in the literature of polynomial-delay enumeration kernelization. In this paper, we study three different enumeration variants of this problem, ENUM d-CUT, ENUM MIN-d-CUT and ENUM MAX-d-CUT that intends to enumerate all the d-cuts, all the minimal d-cuts and all the maximal d-cuts respectively. We consider various structural parameters of the input and provide polynomial-delay enumeration kernels for ENUM d-CUT and ENUM MAX-d-CUT and fully-polynomial enumeration kernels of polynomial size for ENUM MIN-d-CUT.Comment: 25 page

    Parameterized Complexity of Conflict-Free Matchings and Paths

    Get PDF
    An input to a conflict-free variant of a classical problem Gamma, called Conflict-Free Gamma, consists of an instance I of Gamma coupled with a graph H, called the conflict graph. A solution to Conflict-Free Gamma in (I,H) is a solution to I in Gamma, which is also an independent set in H. In this paper, we study conflict-free variants of Maximum Matching and Shortest Path, which we call Conflict-Free Matching (CF-Matching) and Conflict-Free Shortest Path (CF-SP), respectively. We show that both CF-Matching and CF-SP are W[1]-hard, when parameterized by the solution size. Moreover, W[1]-hardness for CF-Matching holds even when the input graph where we want to find a matching is itself a matching, and W[1]-hardness for CF-SP holds for conflict graph being a unit-interval graph. Next, we study these problems with restriction on the conflict graphs. We give FPT algorithms for CF-Matching when the conflict graph is chordal. Also, we give FPT algorithms for both CF-Matching and CF-SP, when the conflict graph is d-degenerate. Finally, we design FPT algorithms for variants of CF-Matching and CF-SP, where the conflicting conditions are given by a (representable) matroid

    A Polynomial Kernel for Bipartite Permutation Vertex Deletion

    Get PDF
    In a permutation graph, vertices represent the elements of a permutation, and edges represent pairs of elements that are reversed by the permutation. In the Permutation Vertex Deletion problem, given an undirected graph G and an integer k, the objective is to test whether there exists a vertex subset S ? V(G) such that |S| ? k and G-S is a permutation graph. The parameterized complexity of Permutation Vertex Deletion is a well-known open problem. Bo?yk et al. [IPEC 2020] initiated a study towards this problem by requiring that G-S be a bipartite permutation graph (a permutation graph that is bipartite). They called this the Bipartite Permutation Vertex Deletion (BPVD) problem. They showed that the problem admits a factor 9-approximation algorithm as well as a fixed parameter tractable (FPT) algorithm running in time ?(9^k |V(G)|?). And they posed the question {whether BPVD admits a polynomial kernel.} We resolve this question in the affirmative by designing a polynomial kernel for BPVD. In particular, we obtain the following: Given an instance (G,k) of BPVD, in polynomial time we obtain an equivalent instance (G\u27,k\u27) of BPVD such that k\u27 ? k, and |V(G\u27)|+|E(G\u27)| ? k^{?(1)}

    Further Exploiting c-Closure for FPT Algorithms and Kernels for Domination Problems

    Get PDF
    For a positive integer c, a graph G is said to be c-closed if every pair of non-adjacent vertices in G have at most c-1 neighbours in common. The closure of a graph G, denoted by cl(G), is the least positive integer c for which G is c-closed. The class of c-closed graphs was introduced by Fox et al. [ICALP `18 and SICOMP `20]. Koana et al. [ESA `20] started the study of using cl(G) as an additional structural parameter to design kernels for problems that are W-hard under standard parameterizations. In particular, they studied problems such as Independent Set, Induced Matching, Irredundant Set and (Threshold) Dominating Set, and showed that each of these problems admits a polynomial kernel, either w.r.t. the parameter k+c or w.r.t. the parameter k for each fixed value of c. Here, k is the solution size and c = cl(G). The work of Koana et al. left several questions open, one of which was whether the Perfect Code problem admits a fixed-parameter tractable (FPT) algorithm and a polynomial kernel on c-closed graphs. In this paper, among other results, we answer this question in the affirmative. Inspired by the FPT algorithm for Perfect Code, we further explore two more domination problems on the graphs of bounded closure. The other problems that we study are Connected Dominating Set and Partial Dominating Set. We show that Perfect Code and Connected Dominating Set are fixed-parameter tractable w.r.t. the parameter k+cl(G), whereas Partial Dominating Set, parameterized by k is W[1]-hard even when cl(G) = 2. We also show that for each fixed c, Perfect Code admits a polynomial kernel on the class of c-closed graphs. And we observe that Connected Dominating Set has no polynomial kernel even on 2-closed graphs, unless NP ? co-NP/poly

    Parameterized Complexity of Feedback Vertex Sets on Hypergraphs

    Get PDF

    Exact and Approximate Digraph Bandwidth

    Get PDF
    In this paper, we introduce a directed variant of the classical Bandwidth problem and study it from the view-point of moderately exponential time algorithms, both exactly and approximately. Motivated by the definitions of the directed variants of the classical Cutwidth and Pathwidth problems, we define Digraph Bandwidth as follows. Given a digraph D and an ordering sigma of its vertices, the digraph bandwidth of sigma with respect to D is equal to the maximum value of sigma(v)-sigma(u) over all arcs (u,v) of D going forward along sigma (that is, when sigma(u) < sigma (v)). The Digraph Bandwidth problem takes as input a digraph D and asks to output an ordering with the minimum digraph bandwidth. The undirected Bandwidth easily reduces to Digraph Bandwidth and thus, it immediately implies that Directed Bandwidth is {NP-hard}. While an O^*(n!) time algorithm for the problem is trivial, the goal of this paper is to design algorithms for Digraph Bandwidth which have running times of the form 2^O(n). In particular, we obtain the following results. Here, n and m denote the number of vertices and arcs of the input digraph D, respectively. - Digraph Bandwidth can be solved in O^*(3^n * 2^m) time. This result implies a 2^O(n) time algorithm on sparse graphs, such as graphs of bounded average degree. - Let G be the underlying undirected graph of the input digraph. If the treewidth of G is at most t, then Digraph Bandwidth can be solved in time O^*(2^(n + (t+2) log n)). This result implies a 2^(n+O(sqrt(n) log n)) algorithm for directed planar graphs and, in general, for the class of digraphs whose underlying undirected graph excludes some fixed graph H as a minor. - Digraph Bandwidth can be solved in min{O^*(4^n * b^n), O^*(4^n * 2^(b log b log n))} time, where b denotes the optimal digraph bandwidth of D. This allow us to deduce a 2^O(n) algorithm in many cases, for example when b <= n/(log^2n). - Finally, we give a (Single) Exponential Time Approximation Scheme for Digraph Bandwidth. In particular, we show that for any fixed real epsilon > 0, we can find an ordering whose digraph bandwidth is at most (1+epsilon) times the optimal digraph bandwidth, in time O^*(4^n * (ceil[4/epsilon])^n)

    Fixed-Parameter Algorithms for Fair Hitting Set Problems

    Get PDF
    Selection of a group of representatives satisfying certain fairness constraints, is a commonly occurring scenario. Motivated by this, we initiate a systematic algorithmic study of a fair version of Hitting Set. In the classical Hitting Set problem, the input is a universe ?, a family ? of subsets of ?, and a non-negative integer k. The goal is to determine whether there exists a subset S ? ? of size k that hits (i.e., intersects) every set in ?. Inspired by several recent works, we formulate a fair version of this problem, as follows. The input additionally contains a family ? of subsets of ?, where each subset in ? can be thought of as the group of elements of the same type. We want to find a set S ? ? of size k that (i) hits all sets of ?, and (ii) does not contain too many elements of each type. We call this problem Fair Hitting Set, and chart out its tractability boundary from both classical as well as multivariate perspective. Our results use a multitude of techniques from parameterized complexity including classical to advanced tools, such as, methods of representative sets for matroids, FO model checking, and a generalization of best known kernels for Hitting Set

    Fixed-Parameter Algorithms for Fair Hitting Set Problems

    Full text link
    Selection of a group of representatives satisfying certain fairness constraints, is a commonly occurring scenario. Motivated by this, we initiate a systematic algorithmic study of a \emph{fair} version of \textsc{Hitting Set}. In the classical \textsc{Hitting Set} problem, the input is a universe U\mathcal{U}, a family F\mathcal{F} of subsets of U\mathcal{U}, and a non-negative integer kk. The goal is to determine whether there exists a subset S⊆US \subseteq \mathcal{U} of size kk that \emph{hits} (i.e., intersects) every set in F\mathcal{F}. Inspired by several recent works, we formulate a fair version of this problem, as follows. The input additionally contains a family B\mathcal{B} of subsets of U\mathcal{U}, where each subset in B\mathcal{B} can be thought of as the group of elements of the same \emph{type}. We want to find a set S⊆US \subseteq \mathcal{U} of size kk that (i) hits all sets of F\mathcal{F}, and (ii) does not contain \emph{too many} elements of each type. We call this problem \textsc{Fair Hitting Set}, and chart out its tractability boundary from both classical as well as multivariate perspective. Our results use a multitude of techniques from parameterized complexity including classical to advanced tools, such as, methods of representative sets for matroids, FO model checking, and a generalization of best known kernels for \textsc{Hitting Set}

    An FPT Algorithm for Elimination Distance to Bounded Degree Graphs

    Get PDF
    In the literature on parameterized graph problems, there has been an increased effort in recent years aimed at exploring novel notions of graph edit-distance that are more powerful than the size of a modulator to a specific graph class. In this line of research, Bulian and Dawar [Algorithmica, 2016] introduced the notion of elimination distance and showed that deciding whether a given graph has elimination distance at most k to any minor-closed class of graphs is fixed-parameter tractable parameterized by k [Algorithmica, 2017]. They showed that Graph Isomorphism parameterized by the elimination distance to bounded degree graphs is fixed-parameter tractable and asked whether determining the elimination distance to the class of bounded degree graphs is fixed-parameter tractable. Recently, Lindermayr et al. [MFCS 2020] obtained a fixed-parameter algorithm for this problem in the special case where the input is restricted to K?-minor free graphs. In this paper, we answer the question of Bulian and Dawar in the affirmative for general graphs. In fact, we give a more general result capturing elimination distance to any graph class characterized by a finite set of graphs as forbidden induced subgraphs

    A fixed-parameter tractable algorithm for elimination distance to bounded degree graphs

    Get PDF
    In the literature on parameterized graph problems, there has been an increased effort in recent years aimed at exploring novel notions of graph edit-distance that are more powerful than the size of a modulator to a specific graph class. In this line of research, Bulian and Dawar [Algorithmica, 75 (2016), pp. 363--382] introduced the notion of elimination distance and showed that deciding whether a given graph has elimination distance at most kk to any minor-closed class of graphs is fixed-parameter tractable parameterized by kk [Algorithmica, 79 (2017), pp. 139--158]. They showed that graph isomorphism parameterized by the elimination distance to bounded degree graphs is fixed-parameter tractable and asked whether determining the elimination distance to the class of bounded degree graphs is fixed-parameter tractable. Recently, Lindermayr, Siebertz, and Vigny [MFCS 2020, LIPIcs Leibniz Int. Proc. Inform. 170, Wadern Germany, 2020, 65] obtained a fixed-parameter algorithm for this problem in the special case where the input is restricted to K5K_5-minor free graphs. In this paper, we answer the question of Bulian and Dawar in the affirmative for general graphs. In fact, we give a more general result capturing elimination distance to any graph class characterized by a finite set of graphs as forbidden induced subgraphs
    corecore